Как на самом деле выглядит черная дыра и что происходит внутри нее? ученые нашли новые ответы

Как образуются чёрные дыры

Такие большие объекты, как звёзды, обладают большой гравитацией. Вся материя звезды всегда притягивается к центру, но термоядерные реакции не позволяют ей схлопнуться. То есть с одной стороны работает притяжение, а с другой давление, которое удерживает форму звезды.

Самой популярной считается теория, что чёрная дыра — это конечная стадия жизни звезды с очень большой массой, превышающей как минимум массу 20 Солнц. Когда внутри такой звезды прекращаются термоядерные реакции (заканчивается топливо), то под действием своей огромной гравитации она ускоренно сжимается в нейтронную звезду. В зависимости от своей начальной массы, она может остаться сверхплотной нейтронной звездой либо продолжить сжиматься с такой силой, что даже свет не сможет покинуть её пределы — это и будет чёрная дыра.

Рекомендуем: Что такое магнитная буря

Существует и другой сценарий, когда все те же процессы происходят с межзвёздным газом, находящимся на стадии превращения в галактику или какое-то скопление. Если внутреннее давление не может компенсировать гравитацию, то вся материя начинает сжиматься, что приводит к образованию чёрной дыры.

Как мы узнали о существовании этих космических монстров?

Уже обнаружено около тысячи объектов, которые причисляются к черным дырам. Всего же предполагается существование десятков миллионов таких объектов. Опишем коротко, как человечество пришло к таким открытиям.

Ранние гипотезы

Гипотеза о существовании такого массивного объекта была впервые предложена в 1783 году английским геологом Джоном Митчеллом в письме Генри Кавендишу из Британского королевского общества. В то время теория гравитации Ньютона и идея второй космической скорости были хорошо известны. По оценкам Митчелла, тело с радиусом в 500 раз больше солнечного и с такой же плотностью будет иметь на своей поверхности вторую космическую скорость, равную скорости света, и поэтому будет невидимым.

В 1796 году французский математик Пьер-Симон Лаплас предложил ту же идею в первом и втором изданиях своей книги «Exposition du système du monde». Однако она не привлекла большого внимания в 19 веке и исчезла из последующих изданий его книги, так как в то время свет считался безмассовой волной, не подверженной влиянию гравитации.

Общая теория относительности

В 1939 году Роберт Оппенгеймер и Хартланд Снайдер предсказали, что массивные звезды могут подвергнуться резкому гравитационному коллапсу. Однако черные дыры (как гипотетические объекты) не были предметом большого интереса до конца 1960-х годов. Интерес к ним ожил в 1967 году с открытием пульсаров.

Открытие Лебедя X-1 (Cygnus X-1)

Лебедь X-1 расположен на расстоянии 6 070 световых лет от нас, имеет диаметр всего около 32-64 км, массу около 14,8 солнечных и скорость вращения 800 оборотов в секунду. Все эти данные соответствуют тому, какой должна быть черная дыра, если бы она находилась в непосредственной близости от HDE 226868. Эти два объекта расположены на расстоянии 0,2 а. е. друг от друга, что позволяет Лебедю откачивать материал из своего спутника, придавая ему форму яйца. Было замечено, что материал входит в Лебедя, но в конечном итоге он значительно смещается и «уходит» в сингулярности.

Сингулярность — это точка за горизонтом событий, где, согласно общей теории относительности, пространство-время имеет бесконечную кривизну. В этой области пространство и время перестают существовать в том виде, как мы их знаем, а потому к ней не применимы действующие законы физики. Пространство за горизонтом событий особенно в том смысле, что сингулярность является буквально единственным возможным будущим, поэтому все частицы должны двигаться к нему.

Обнаружение

Отличить черную дыру от другого объекта можно по соотношению размера к массе, для этого нужно сравнить ее физический радиус с гравитационным радиусом. Массу и расположение черных дыр рассчитывают используя данные о перемещении звезд.

Лучи смерти

Ученым особенно интересно получить информацию о массивных струях энергии, которые исходят из черных дыр.

Эти струи образуются, когда вещество вне черной дыры нагревается до миллиардов градусов. Оно закручивается в так называемом аккреционном диске. Некоторая часть его проходят точку невозврата – горизонт событий и падает в черную дыру.

Но черные дыры – привередливые едоки. Некоторая часть вещества, выбрасывается из аккреционного диска в форме плотно сфокусированных струй. Эти струи движутся потом почти со скоростью света на расстоянии в десятки тысяч световых лет.

Возможно, что у Sgr * A нет струй. За последние несколько десятилетий она была не очень активной.

Но если струи действительно существуют, телескопы EHT будут получать об этом информацию. Затем команда EHT сможет использовать ее, чтобы попытаться ответить на некоторые нерешенные вопросы об этом явлении.

До недавнего времени доказательства, подтверждающие теорию общей теории относительности (ОТО), были получены из наблюдений за нашей Солнечной системой. Но условия в нашем маленьком пятачке Вселенной довольно мягкие. Условия, обнаруженные вблизи черной дыры, позволят подвергнуть ее более  серьезному испытанию.

Может быть, это портал?

Внутри черной дыры не действуют привычные нам физические законы. Время там растягивается или вовсе останавливается, то же самое происходит с пространством. Если бы мы могли наблюдать за погружением в черную дыру какого-нибудь объекта, например космического корабля, то нам бы казалось, что, приближаясь к ее границе, он замедляет свое движение, а потом полностью останавливается. Мы бы не увидели падения, которое уже произошло в реальности. А если бы на поверхности этого корабля находились часы, то они бы для нас остановились. Хотя время для наблюдателей, находящихся внутри корабля, шло бы как обычно. Все эти парадоксы следуют из общей теории относительности, разработанной Эйнштейном.

Граница черной дыры, попав за которую уже невозможно выбраться, называется горизонтом событий. Попав за этот горизонт, объект затягивается в центр черной дыры, попутно вытягиваясь в пространстве, и со временем полностью исчезает. Во всяком случае, из нашей Вселенной. По предположению некоторых ученых, черные дыры — это что-то вроде тоннеля в другое измерение. На другом конце этого тоннеля находится так называемая белая дыра, которая действует противоположно черной — выбрасывает из себя энергию и материю. Правда, эта интересная теория пока не имеет доказательств.

Поделиться ссылкой

Что предлагает Хокинг для решения информационного парадокса черной дыры?

Идея состоит в том, что у черных дыр должен быть способ хранить информацию, который до сих пор не приняли. Информация хранится на горизонте черной дыры и может вызывать крошечные смещения частиц в излучении Хокинга. В этих крошечных смещения может быть информация о попавшей внутрь материи. Точные детали этого процесса в настоящее время не определены. Ученые ждут более подробного технического документа от Стивена Хокинга, Малькома Перри и Эндрю Строминджера. Говорят, он появится в конце сентября.

На данный момент мы уверены, что черные дыры существуют, знаем, где они находятся, как образуются и чем станут в итоге. Но детали того, куда девается поступающая в них информация, до сих пор представляют одну из самых больших загадок Вселенной.

Видео

https://youtube.com/watch?v=5ki1ZxwGJNI

Источники

  • https://hi-news.ru/science/10-faktov-o-chernyx-dyrax-kotorye-dolzhen-znat-kazhdyj.htmlhttps://www.popmech.ru/science/417252-naskolko-ogromnymi-byvayut-chernye-dyry/https://www.syl.ru/article/333972/chernaya-dyira-chto-vnutri-interesnyie-faktyi-i-issledovaniyahttp://ya-uznayu.ru/kosmos/291-kakie-byvayut-i-kak-obrazuyutsya-chernye-dyry.htmlhttps://infuture.ru/article/10332https://collectedpapers.com.ua/ru/black_holes_universe/shho-viprominyuye-chorna-dirahttps://science.ru-land.com/stati/informacionnyy-paradoks-chernyh-dyr-0

Почему Хокинг ошибся по поводу черных дыр?

Согласно недавнему исследованию Стивена Хокинга (Stephen Hawking), создавшего настоящий переполох, некоторые издания объявили о том, что черных дыр нет. Однако, это не совсем то, что утверждал Хокинг. Впрочем уже сейчас понятно, что предположение Хокинга о черных дырах ошибочно, потому что парадокс, который он пытается доказать, уже не парадокс вовсе.

Это все сводится к известному нам парадоксу огненной стены черных дыр. Главной особенностью черной дыры является ее горизонт событий. Горизонт событий черной дыры – точка невозврата при приближении к ней. В общей теории относительности Эйнштейна, горизонт событий представляет собой пространство и время, которые настолько деформированы под воздействием силы тяжести, что их невозможно покинуть. Пересечете горизонт событий — и вы навсегда в ловушке.

Это односторонняя природа горизонта событий уже давняя проблема для понимания гравитационной физики. Например, горизонт событий черной дыры, казалось бы, нарушает законы термодинамики. Один из принципов термодинамики гласит о том, что ничто не должно иметь температуру абсолютного нуля. Даже очень холодные вещи излучают немного тепла, но если черная дыра поглощает свет, то она не выделяет никакого тепла. Таким образом, температура черной дыры равна нулю, что не возможно.

Тогда в 1974 году Стивен Хокинг показал, что черные дыры излучают свет благодаря квантовой механике. В квантовой теории есть пределы тому, что может быть известно об объекте. Например, вы не можете знать точно энергию объекта. Из-за этой неопределенности, энергия системы может колебаться спонтанно, до тех пор, пока ее средняя величина остается постоянной. Хокинг продемонстрировал, что вблизи горизонта событий черной дыры пары частиц могут появиться, когда одна частица оказывается в ловушке внутри горизонта событий (немного снижая массу черной дыры), а другая может избежать этого, в виде излучения (унося немного энергии черной дыры).

В то время как излучение Хокинга решило одну проблему с черными дырами, оно создало еще одну, известную как парадокс огненной стены. Когда квантовые частицы появляются парами, они спутаны, то есть, они связаны в квантовом смысле. Если одна частица захватывается черной дырой, а другая вырывается, тогда спутанность пары нарушается. В квантовой механике можно было бы сказать, что пара частиц появляется в чистом, первоначальном, виде, и горизонт событий, казалось бы, сломал это состояние.

В прошлом году было показано, что если излучение Хокинга в чистом виде, тогда либо оно не может излучать в направлении, требуемом термодинамикой, или это создаст огненную стену частиц высокой энергии вблизи поверхности горизонта событий. Это часто называют парадокс огненной стены, потому что согласно общей теории относительности, если оказаться вблизи горизонта событий черной дыры, ничего необычного не удастся заметить. Основная идея общей теории относительности (принцип эквивалентности) требует, чтобы, если вы свободно падаете к горизонту событий, не должно быть сильной огненной стены частиц высокой энергии. В своей работе Хокинг предложил решение этого парадокса, предположив, что черные дыры не имеют горизонты событий. Вместо этого они имеют кажущиеся горизонты, которые не требуют соответствия огненной стены и термодинамики. Поэтому заявление «черных дыр нет» популярно в прессе.

Но парадокс огненной стены возникает только при излучении Хокинга в чистом виде, и исследование  Сабины Хоссенфельдер (Sabine Hossenfelder) показывает, что излучение Хокинга не в чистом виде. В своей статье, Хоссенфельдер показывает, что вместо пары спутанных частиц, излучение Хокинга связано с двумя такими парами. Одна спутанная пара попадает в ловушку черной дыры, в то время как другая убегает. Процесс похож на первоначальное предложение Хокинга, но частицы Хокинга не в чистом виде.

Таким образом, нет никакого парадокса. Черные дыры могут излучать свет таким образом, который согласуется с термодинамикой, и область вблизи горизонта событий не имеет огненной стены, как требует общая теория относительности. В итоге, предложение Хокинга является решением проблемы, которой не существует.

Информационный парадокс черных дыр

Вы наверняка слышали, что черные дыры уничтожают информацию, которая в них попадает. Почему это является такой огромной проблемой для физики, что ученые всеми силами пытаются избавиться от этой нелепой и нелогичной формулировки? Что ж, мир стал довольно сложным. В моем детстве все было проще. Трава была зеленее, газировка вкуснее, а черные дыры были черными. То есть черные дыры сжимали материю и энергию в бесконечно плотные сингулярности, не создавая непреодолимых парадоксов. Это были хорошие дни.

Но им пришел конец. Сегодня черные дыры вмещают все пятьдесят оттенков серого, изгибая законы физики один за другим. Что же такое информационный парадокс черной дыры?

Для начала давайте поговорим об информации. Когда физики говорят «Информация», они имеют в виду конкретное состояние каждой частицы во вселенной: масса, положение, спин, температура и т. д. отпечаток пальца, который уникальным образом идентифицирует каждого, и вероятность того, что эти частицы собираются делать во вселенной. Вы можете взять атомы, раздавить их или сжать вместе, но квантово — волновая функция, которая их описывает, всегда будет сохраняться.

Квантовая физика позволяет вам запускать всю вселенную вперед и назад до тех пор, пока вы обращаете все в своей математике: заряд, четность и время

Это важно. Светлые умы говорят нам, что информация должна жить, несмотря ни на что

Представьте ее в виде энергии. Вы не можете уничтожить энергию: только преобразовать.

Что такое черная дыра? Она образуется, когда крупнейшая звезда с массой в 20 раз превышающей солнечную жестоко коллапсирует и взрывается. Ее плотность материи чрезвычайно высока, скорость убегания превышает скорость света. Особо прикольные имеют перегретый диск аккреции с материей, которая кружится вокруг горизонта событий черной дыры, за пределы которого свет уже не может вырваться никак.

И тут у нас появляется один из самых странных побочных эффектов относительности: замедление времени. Представьте себе часы, падающие в направлении черной дыры, которые засасывает гравитационный колодец. Время будет идти медленнее по мере приближения к черной дыре, пока наконец не замерзнет на краю горизонта событий. Фотоны от часов вытянутся, и цвет часов пройдет через красное смещение. В конце концов, он исчезнет, поскольку фотоны вытянутся за пределы того, что могут обнаружить наши глаза.

Лишь в том случае, если бы вы смотрели на черную дыру миллиарды лет, вы увидели бы все, что она собрала, что застряло внутри, как на липучке. Вы нашли бы и часы, и «Титаник», и теоретически смогли бы определить квантовое состояние каждой отдельной частицы и фотона, который попал в черную дыру. Поскольку потребуется практически бесконечное количество времени, чтобы все испарилось совершенно, все в порядке.

Информация навсегда на поверхности черной дыры сохраняется. Все, что туда попало, определенно погибло, но их информация, их драгоценная квантовая информация, в полном порядке.

В 1975 году Стивен хокинг сбросил на черные дыры бомбу. Он осознал, что у черных дыр есть температура, и с течением огромного периода времени они совершенно испарятся, выпустив массу и энергию обратно во вселенную. Этот процесс был обозначен как излучение хокинга.

Но эта же идея парадокс породила. Информация о том, что попало в черную дыру сохраняется замедлением времени, но сама масса черной дыры испаряется. В конце концов, она совершенно исчезнет, и тогда куда денется информация? Та информация, которая не может быть уничтожена?

Астрономы в шоке. Десятками лет они работают, пытаясь решить этот вопрос. Есть небольшой набор вариантов:

Черные дыры не испаряются вовсе, хокинг ошибся.
Информация в черной дыре каким-то образом утекает вместе с излучением хокинга.
Черная дыра удерживает ее до самого конца, и когда испаряются две последних частицы, вся информация внезапно высвобождается во вселенную.
Информация сжимается в микроскопическое пространство, которое остается после испарения черной дыры.
Черная дыра.

Возможно, физики никогда не смогут выяснить это. Недавно хокинг выдвинул новую идею, которая могла бы разрешить информационный парадокс черной дыры. Он предположил, что есть некий способ, которым излучение хокинга могло бы уносить в себе информацию о новой материи, падающей в черную дыру.

Таким образом, информация обо всем, что падает, сохраняется уходящим излучением, возвращается во вселенную и разрешает парадокс. Но это догадка, поскольку и само излучение хокинга никто не обнаружил. Возможно, мы через много десятков лет узнаем не только то, в правильном направлении мы движемся или нет, но и собственно решение парадокса.

В ситуациях вроде этой мы вспоминаем, как мало знаем о вселенной на самом деле.

Типы Чёрных дыр

До сих пор астрономы выделяли три типа черных дыр: звездные черные дыры, сверхмассивные черные дыры и промежуточные черные дыры.

Звездные чёрные дыры

Когда звезда сжигает остатки своего топлива она может сжаться. Для более мелких звезд (которые примерно в три раза превышают массу Солнца) новое ядро станет нейтронной звездой или белым карликом. Но когда большая звезда коллапсирует, она продолжает сжиматься и создает звездную черную дыру .

Черные дыры, образованные коллапсом отдельных звезд, относительно невелики, но имеют очень большую плотность. Один из таких объектов содержит более чем в три раза больше массы Солнца. Это приводит к сумасшедшему количеству гравитационной силы, притягивающей объекты вокруг чёрной дыры. Затем звездные черные дыры поглощают пыль и газ из окружающих их галактик, что позволяет им расти в размерах.

Согласно данным Гарвард-Смитсоновского центра астрофизики, — Млечный Путь содержит несколько сотен миллионов звездных черных дыр.

Сверхмассивные черные дыры

Маленькие черные дыры населяют бесконечную вселенную, но их родственники, — сверхмассивные черные дыры, — доминируют над ними. Эти огромные черные дыры в миллионы или даже миллиарды раз массивнее Солнца, но примерно одинакового размера в диаметре. Считается, что такие черные дыры лежат в центре почти каждой галактики, включая Млечный Путь.

Возникновение:

Ученые не уверены, как возникают такие большие черные дыры. Как только эти гиганты сформировались, они собирают массу из пыли и газа вокруг себя, материала, который в изобилии находится в центре галактик, что позволяет им расти до еще более огромных размеров.

  • Сверхмассивные черные дыры могут быть результатом слияния сотен или тысяч крошечных черных дыр. 
  • Большие газовые облака также могут быть причастны к формированию сверхмассивной дыры, — схлопываясь вместе, они быстро наращивают массу. 
  • Третий вариант — это коллапс звездного скопления, когда все звезды падают вместе. 
  • В-четвертых, сверхмассивные черные дыры могут возникать из больших скоплений темной материи. Это вещество, которое мы можем наблюдать через его гравитационное воздействие на другие объекты; однако мы не знаем, из чего состоит темная материя, потому что она не испускает свет и не может быть непосредственно наблюдаема.

Промежуточные черные дыры

Ученые когда-то думали, что черные дыры бывают только малых и больших размеров, но недавние исследования показали возможность существования средних или промежуточных черных дыр (IMBHs). Такие тела могут образовываться, когда звезды в скоплении сталкиваются в цепной реакции. Некоторые из этих промежуточных черных дыр, образующихся в одной и той же области, могут затем в конечном итоге столкнуться в центре галактики и создать сверхмассивную черную дыру.

В 2014 году астрономы обнаружили нечто похожее на черную дыру средней массы в рукаве спиральной галактики.

Астрономы очень усердно искали эти черные дыры среднего размера, — говорится в заявлении соавтора исследования Тима Робертса из Университета Дарема в Великобритании. Были намеки, что они существуют, но IMBHs вели себя как давно потерянный родственник, который не заинтересован в том, чтобы его нашли.

Более новые исследования, начиная с 2018 года, предположили, что эти промежуточные черные дыры могут существовать в центре карликовых галактик (или очень маленьких галактик). Наблюдения 10 таких галактик (пять из которых были ранее неизвестны науке до этого последнего исследования) выявили рентгеновскую активность — обычную для черных дыр — предполагая наличие в них черных дыр с массой от 36 000 до 316 000 солнечных масс. Эта информация поступила от компании Sloan Digital Sky Survey, которая изучает около 1 миллиона галактик.

Излучение Хокинга

Этот тип излучения, открытый известным физиком Стивеном Хокингом, значительно усложняет жизнь современным ученым – ведь из-за этого открытия в теории черных дыр появилось немало трудностей. В классической физике существует понятие вакуума. Этим словом обозначается полная пустота и отсутствие материи. Однако с развитием квантовой физики понятие вакуума было видоизменено. Ученые выяснили, что он заполнен так называемыми виртуальными частицами – под воздействием сильного поля они могут превратиться в реальные. В 1974 году Хокинг выяснил, что подобные превращения могут происходить в сильном гравитационном поле черной дыры – возле ее внешней границы, горизонта событий. Такое рождение является парным – появляется частица и античастица. Как правило, античастица обречена на падение в черную дыру, а частица улетает. В результате ученые наблюдают некоторое излучение вокруг этих космических объектов. Оно и получило название излучения Хокинга.

В ходе этого излучения то вещество, что внутри черной дыры, медленно испаряется. Дыра теряет массу, при этом интенсивность излучения обратно пропорциональна величине квадрата ее массы. Интенсивность излучения Хокинга ничтожно мала по космическим меркам. Если предположить, что существует дыра массой в 10 солнц, и на нее не попадает ни свет, ни какие-либо материальные объекты, то даже в этом случае время ее распада будет чудовищно велико. Жизнь такой дыры будет превосходить все время существования нашей Вселенной на 65 порядков.

Что излучает черная дыра?

Черная дыра рождает не только фотоны, но и дру­гие частицы. Сравнительно большие черные дыры мас­сой в несколько солнечных обладают столь низкой тем­пературой, что могут производить только «безмассо­вые» частицы — частицы, всегда летящие со скоростью света и не имеющие собственной массы покоя. К ним относятся фотоны, электронные и мюонные нейтрино, их античастицы и, наконец, еще гравитоны — кванты гра­витационных волн. Черная дыра массой, типичной, для звезд, рождает особенно много нейтрино (81% все­го потока) всех сортов, затем фотонов (17%) и грави­тонов (2%) (рис. 8). Тот факт, что разные частицы из­лучаются в разных количествах, объясняется различием их свойств. Нейтрино испускается больше всего, пото­му что их внутренний угловой момент (спин) минима­лен (V2), а гравитонов меньше всего, так как их спин максимален (2).

Черные дыры малой массы имеют большую темпе­ратуру. Так, температура черных дыр массой, меньшей 1017—1016 г, выше 109—1010 К. Эти черные дыры порож­дают, помимо перечисленных частиц, электронно-позитронные пары. Заметим, что размеры таких черных дыр составляют всего 10-10 см (в 1000 раз меньше размера атома).

Еще меньшие черные дыры массой < 5 • 1014 г спо­собны излучать мюоны и более тяжелые элементарные частицы. Черная дыра массой 1014 г излучает 12% тяже­лых частиц и античастиц, 28% электронов и позитронов, 48% нейтрино всех сортов, 11% фотонов и 1% гравито­нов (размер этих черных дыр меньше атомного ядра).

Как мы уже отмечали, такие карликовые черные ды­ры могли возникать только в далеком прошлом Вселен­ной

Особую важность квантовые процессы приобрета­ют именно для первичных черных дыр. Если в начале расширения Вселенной, когда вещество было плот­ным, образовались черные дыры массой, меньшей 1015г, то все они должны к нашему времени испариться

По этой причине процесс, открытый Хоукингом, имеет очень важное значение для космологии. Процесс испарения первичных черных дыр ведет к излучению высокочастот­ных фотонов — гамма-излучения. Так, черные дыры массой около 1015 г должны излучать кванты с энерги­ей около 100 МэВ.

Наблюдение таких квантов, приходящих из космоса, в принципе могло бы помочь обнаружению первичных черных дыр. Пока же они не обнаружены, и можно только сказать, что количество черных дыр массой око­ло 1015 г во Вселенной должно быть в среднем не боль­ше, чем десять тысяч на каждый кубический парсек. Если бы их было больше, то общее количество гамма-квантов с энергией около 100 МэВ было бы больше наб­людаемого сейчас потока гамма-квантов из космоса. Количество «десять тысяч» кажется большим, но вспом­ним, что масса первичных черных дыр ничтожна по сравнению, скажем, с массой звезды.

Скорее в плане «мечтаний» (хотя и строго научных) можно представить себе в. отдаленном будущем искус­ственное изготовление в космосе малых черных дыр. Они могли бы аккумулировать энергию, затраченную на их изготовление, и затем излучать ее в заданном тем­пе и с заданной энергией частиц, которые определяются массой черных дыр. Так, черная дыра массой 1015 г бу­дет испускать 1017 эрг/с на протяжении 10 млрд. лет.

Много еще неясного в новом явлении. Например, не­известно, испаряется ли черная дыра совсем без остат­ка или на ее месте остается частичка с так называемой лланковской массой, 10-5 г. Неясно, можно ли наблю­дать процесс испарения черных дыр во Вселенной. И, конечно, пока только фантастическими представляются какие-либо эксперименты с черными дырами в лабора­ториях физиков. Однако уже то, что известно, заставляет по-новому осмыслить многие аспекты эволюции материи во Вселенной.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Octobercinema
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: